Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Allergy, Asthma & Immunology Research ; : 338-358, 2020.
Article in English | WPRIM | ID: wpr-785337

ABSTRACT

PURPOSE: Phosphoinositide 3-kinase (PI3K)-δ-dependent Akt activation is known to play critical roles in various immune responses of white blood cells in which PI3K-δ isoform is mostly expressed in contrast to the classes IA PI3Ks p110α and p110β. However, the immunological role of PI3K-δ isoform is still controversial in airway epithelium under house dust mite (HDM)-induced allergic response. This study aimed to evaluate the role of PI3K-δ isoform in HDM-induced allergic responses, focusing on NLRP3 inflammasome activation in airway epithelium.METHODS: We used wild-type mice and PI3K-δ knock-out (KO) mice for HDM-induced asthma animal model and also performed in vitro experiments using primary cultured murine tracheal epithelial cells and human airway epithelial cells.RESULTS: PI3K-δ activated HDM-induced NLRP3 inflammasome and epithelial cell-derived cytokines in the lung including airway epithelial cells. PI3K-δ KO mice or knock-down of PI3K-δ using siRNA exhibited the significant reduction in allergic asthmatic features and the suppression of NLRP3 inflammasome assembly as well as epithelial cell-derived cytokines. Interestingly, significantly increased expression of PI3K-δ isoform was observed in stimulated airway epithelial cells and the increases in epithelial cell-derived cytokines were markedly suppressed by blocking PI3K-δ, while these cytokine levels were independent of NLRP3 inflammasome activation.CONCLUSIONS: The results of this study suggest that PI3K-δ-isoform can promote HDM-induced allergic airway inflammation via NLRP3 inflammasome-dependent response as well as via NLRP3 inflammasome-independent epithelial cell activation.


Subject(s)
Animals , Humans , Mice , Asthma , Cytokines , Dust , Epithelial Cells , Epithelium , In Vitro Techniques , Inflammasomes , Inflammation , Leukocytes , Lung , Models, Animal , Phosphotransferases , Pyroglyphidae , RNA, Small Interfering
2.
Allergy, Asthma & Immunology Research ; : 106-120, 2018.
Article in English | WPRIM | ID: wpr-713205

ABSTRACT

Severe asthma is a heterogeneous disease entity to which diverse cellular components and pathogenetic mechanisms contribute. Current asthma therapies, including new biologic agents, are mainly targeting T helper type 2 cell-dominant inflammation, so that they are often unsatisfactory in the treatment of severe asthma. Respiratory fungal exposure has long been regarded as a precipitating factor for severe asthma phenotype. Moreover, as seen in clinical definitions of allergic bronchopulmonary aspergillosis (ABPA) and severe asthma with fungal sensitization (SAFS), fungal allergy-associated severe asthma phenotype is increasingly thought to have distinct pathobiologic mechanisms requiring different therapeutic approaches other than conventional treatment. However, there are still many unanswered questions on the direct causality of fungal sensitization in inducing severe allergic inflammation in SAFS. Recently, growing evidence suggests that stress response from the largest organelle, endoplasmic reticulum (ER), is closely interconnected to diverse cellular immune/inflammatory platforms, thereby being implicated in severe allergic lung inflammation. Interestingly, a recent study on this issue has suggested that ER stress responses and several associated molecular platforms, including phosphoinositide 3-kinase-δ and mitochondria, may be crucial players in the development of severe allergic inflammation in the SAFS. Defining emerging roles of ER and associated cellular platforms in SAFS may offer promising therapeutic options in the near future.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , Asthma , Biological Factors , Endoplasmic Reticulum , Fungi , Immunity, Innate , Inflammation , Mitochondria , Organelles , Phenotype , Pneumonia , Precipitating Factors
3.
Tuberculosis and Respiratory Diseases ; : 170-173, 2013.
Article in English | WPRIM | ID: wpr-215483

ABSTRACT

Primary pulmonary lymphoepithelioma-like carcinoma (LELC) is rare, with a more favorable prognosis compared with that of other types of non-small cell lung cancers. Herein, we describe an interesting case of primary pulmonary LELC confirmed postoperatively, which had been initially diagnosed as poorly differentiated adenocarcinoma. We suggest that despite the rarity of pulmonary LELC, it should be included as one of the differential diagnoses for lung malignancies. Physicians should consider taking a larger biopsy, especially when histologic examination shows undifferentiated nature.


Subject(s)
Adenocarcinoma , Biopsy , Carcinoma, Non-Small-Cell Lung , Diagnosis, Differential , Lung , Lung Neoplasms , Prognosis
4.
Tuberculosis and Respiratory Diseases ; : 79-81, 2013.
Article in English | WPRIM | ID: wpr-217173

ABSTRACT

Few recent reports have indicated that Mycobacterium massiliense causes various infections including respiratory infection. However, there is scarce information on the clinical significance, natural history of the infection, and therapeutic strategy. This report describes a case of an immunocompetent old man infected by M. massiliense that causes acute respiratory failure. In light of the general courses of non-tuberculous mycobacterium infections, rapid progression and fatality are very rare and odd. In addition, we discuss the biological and pathological properties of M. massiliense with the review of cases reported previously including our fatal one.


Subject(s)
Light , Mycobacterium , Mycobacterium Infections , Mycobacterium Infections, Nontuberculous , Natural History , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL